The End of Astronomy?

9 05 2011

Astronomy as we know it…. Is it the beginning of the end?

The Monty Python foot from the skyWe are creatures that respond to change, to uncertainty, to excitement. In a society where either the media, or the filters we create around us, cater to our most basic desires, what is the role of awe, wonder and curiosity about the vast Universe around us?

Some would point to the immense interest in technology that today’s youth display as testament to them being the most scientific generation ever. But i-pads, fads and widgets are the mothers of necessity rather than invention. When you strip away the social aspects of technology, just how motivated by science are they? Is there an urge to piece together the building blocks of reality? Unweaving the tapestry of creation in which our lives are woven, if you will.

So perhaps my title should be The End of Interest in Astronomy?, but that isn’t quite as catchy.

yawningAn EU survey highlights that the majority of the younger population (15-25) doesn’t see the sky above them as something really worth knowing about. Only 1 in 5 note significant interest in astronomy. The interest in technology and the environment is 200% higher. Even more disturbingly, while only 11% are disinterested in environmental issues, almost four times as many are disinterested in astronomy.

wrestlingFor those of us that work in astronomy these numbers are a punch in the stomach. Have we overestimated public interest arising from inspiring words by Carl Sagan years ago? Or, taking a positive view, perhaps the youth of North America are fundamentally more interested in the heavens above than our European cousins? While a N. American survey is sadly lacking, some countries, Latvia for example, show an interest in astronomy that is four times the European average.

But in my darkest moments, I wonder, could astronomers themselves be partly to blame for these interest levels? Have we just not engaged people the way we should?

The true measure of astronomy’s value is how it contributes to our society. While there is plenty of data to suggest it has many economic benefits, astronomy has given us a cultural legacy of immense proportions – it has taught humankind its true place in the universe. As some have said, to understand the Earth’s value, we actually had to leave it.

Bad analogiesSo is the lack of interest apparent in the youth of Europe just a matter of communication? Have astronomers failed to explain themselves and their work in ways that the public can easily understand? Are the analogies we use failing to inspire? The following xkcd strip beautifully explains the challenges we face.

For many years I saw research in very black and white fashion. I subscribed to the idea that if I couldn’t explain the value of what I was doing in a paragraph, I wasn’t doing anything useful. It’s a deceptively appealing concept that makes things sound like they have their place. No arguing, no dilly-dallying, you can explain why it’s useful or it simply isn’t.

grandparentsBut just try explaining General Relativity in a paragraph, or Quantum Theory. You can’t just sit granny/grandpa (assuming they aren’t physicists of course) and walk them through the details in 30 seconds – there are entire books that try to explain those concepts. Yet, these complex ideas underpin some of the most critical technologies we have today – think GPS or semiconductors. And don’t cop-out by saying the technological & economic applications mean those are important.  Newton’s Law of Universal Gravitation, developed in the 1600’s, was separated by centuries from commercial applications in communications satellites.

So communicating ideas has always been a problem. Are the portents of doom perhaps then more driven by the idea that astronomy research is somehow becoming less relevant?

A number of prominent astronomers (e.g. Andy Lawrence) have written about how the questions of astronomy are becoming progressively tougher to answer. And how, as we push back the boundaries of our knowledge, and delve into the immensity of details underlying the universe, the questions we can truly answer are becoming more specialist.

It’s true that we’ve answered the easy questions. We’ve figured out the geometry of the Universe, how galaxies cluster and some of the more simple aspects of galaxy formation and stellar structure. Many of these things could be explained quickly and succinctly.

GaiaBut there are a great many challenges ahead. The Gaia mission to develop a 3-d map of a billion stars in our galaxy, will revolutionize our knowledge of stellar motions, and despite decades of study we still don’t have a comprehensive understanding of how stars interact with spiral structure. This is an immense challenge.

jwstHubble Telescope’s long talked-about replacement, the James Webb Space Telescope is also coming in 2015. We’ll see the first galaxies in our Universe and uncover evidence of the earliest giant black holes. Complemented by 30m class ground-based telescopes, such as the TMT or E-ELT, the light-capturing power of telescopes will rise by an order of magnitude. The SKA radio telescope, will reveal the Universe at radio wavelengths in ways we can only imagine today. And tantalizingly, evidence of alien life might possibly be found with these instruments.

So when I was asked, “What will Canada lose if we don’t invest in astronomy?” I responded: “It’s simple. When scientists announce another planetary system with life has been found, and answer one of the most profound questions humanity has asked, do you want a Canadian to have any chance of making that announcement?”

But aside from answering amazing science questions, our challenge as professional astronomers is to reach out and communicate about the incredible science we get to do. And in turn, to pass on our awe at how amazing the Universe around us really is.

We aren’t even close to the end of astronomy. The Universe has more up its sleeve than we’ve yet to imagine.