Countdown to Curiosity: Landed!

6 08 2012

Congratulations to the Curiosity team! I’ve put a capture of the very first image downloaded from the surface to the left. Hard to believe after the months of flying through interplanetary space that Curiosity is on Mars!

The NASA website has already gone down with everybody trying to download the initial images, but keep trying! News coming in by the second – they’ve just managed to get things going again.

A press conference is schedule for 11:15 Pacific, but just to keep the info flowing, here’s what we said about the landing in the blog:


Imagine hurtling toward a planet at tens of thousands of kilometers an hour. Your millions of miles away from the Earth and there’s no human pilot to plot a course once you’re inside the atmosphere to avoid any unexpected events. Sounds pretty risky, yeah? And it is… Beagle 2 was the last surface mission to fail (and we think we found the wreckage), but just four years earlier two missions, Mars Climate Orbiter and Mars Polar Lander, both failed as well. If you want statistics, NASA has landed on Mars successfully five (yes only five) times! And when it comes to Curiosity, the landing procedure that’s been chosen is more complex than any other mission before it…

While the Apollo missions entered into orbit around the Moon, Curiosity is going to slow down from interplanetary speeds without this step. In this sense its landing will be somewhat similar to the Apollo “splashdowns” on Earth. Thus Curiosity is going to hit the Martian atmosphere travelling at over 20,000 km per hour, and again, just like the Apollo missions, the spacecraft carrying Curiosity has a heat shield underneath to protect the rover from the extreme heat (a peak of 2100 C) produced in re-entry. All the steps that follow are given on this great graphic provided by NASA:

Once into the atmosphere Curiosity will begin a series of maneuvers at several times the speed of sound, before deploying its parachute while still at supersonic speeds. This part of the descent is anticipated to go pretty well. Supersonic breaking parachutes have been used since the Mercury missions in late 1950s early 1960s so the technology is nothing new.

But once Curiosity has descended to about 1.8 km above the surface, and is travelling at aroud 400 km per hour, it will separate from the parachute and begin a powered descent. In about 40 seconds it will be down to just 20m above the Mars surface, and then perhaps the most risky part of the whole mission begins: lowering to the surface on the end of a “sky crane”. Curiosity can’t just be “dropped” – it’s too heavy at almost 1 ton in mass. Once the sky crane is fully deployed the spacecraft will slowly descend down at about 0.75m per second. Once it detects that Curiosity is on the ground it will cut the lines on the crane and fly away at least 150 m away from the rover.


Update: 10:45 am (ADT) still waiting for those images from MARDI showing the descent! 🙂




Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: